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Abstract: We describe the modifications induced in a molecular orbital model of transition-metal clusters by the inclusion 
of electron localization. We show that while for Ct28)

1 configurations the molecular orbital predictions are left unaltered by 
electron localization, such is not the case for (t2g)

3 configurations. 

Work of the last few years has shown that extended Huckel 
(eH) calculations can be a powerful tool in rationalizing crystal 
structure types. Indeed, the wide range of materials that have 
been treated using this method is remarkable. The reported 
calculations range from those on halides, oxides, chalcogenides, 
pictinides, carbides, and borides all the way to alloys and elemental 
structures.1 In many cases, the researchers have used the eH 
method in a similar manner. The authors compare a series of 
related structure types and then proceed to show why at certain 
electron counts (i.e., for a given number of electrons per atom or 
per unit cell) one specific structure is found to be energetically 
preferred. In certain comparisons the eH calculations exactly 
predict the critical electron count at which structures change from 
one type to another. Examples of such gratifying accurate pre­
dictions are to be found in the correct sorting among the binary 
transition-metal oxides of the sphalerite, TiO, NbO, and PdO 
structure types, among the metal hydride chlorides of the CaHCl, 
GdHCl, and ZrHCl structure types, among the bottom-row 
main-group elements of the hexagonal closed-packed, face-center 
cubic, a-Bi and a-Po structure types, and among transition-metal 
binary alloys of the CsCl and CuTi structure types.2 The above 
list is by no means complete but does illustrate the sorts of systems 
for which the eH method appears to be at its most reliable. 

Equally of interest though are those systems for which the eH 
method gives results of only approximate validity. One example 
of such approximate validity3 is found when comparing the rutile, 

1, and a-Pb02, 2, structures. The eH calculations for d0 through 
d6 transition-metal dioxides are shown in Figure 1. When com-

(1) (a) Li, J.; Hoffmann, R. J. Phys. Chem. 1988, 92, 487. (b) Canadell, 
E.; Mathey, Y.; Whangbo, M. H. J. Am. Chem. Soc. 1988, 110, 104. (c) 
Burdett, J. K.; Coddens, B. A. Inorg. Chem. 1988, 27, 418. (d) Zheng, C; 
Hoffmann, R.; Nesper, R.; von Schnering, H. G. J. Am. Chem. Soc. 1986, 
108, 1876. (e) Tremel, W.; Hoffmann, R.; Silvestre, J. J. Am. Chem. Soc. 
1986, 108, 5174. (f) Wheeler, R. A.; Whangbo, M. H.; Hughbanks, T.; 
Hoffmann, R.; Burdett, J. K.; Albright, T. A. J. Am. Chem. Soc. 1986, 108, 
2222. (g) Burdett, J. K.; Miller, G. J. / . Am. Chem. Soc. 1987, 109, 4081. 
(h) Bernstein, J.; Hoffmann, R. Inorg. Chem. 1985, 24, 4100. (i) Burdett, 
J. K.; Canadell, E.; Hughbanks, T. J. Am. Chem. Soc. 1986, 108, 3971. 

(2) (a) Burdett, J. K.; Hughbanks, T. J. Am. Chem. Soc. 1984,106, 3101. 
(b) Burdett, J. K.; Miller, G. J. J. Am. Chem. Soc. 1987, 109, 4092. (c) 
Burdett, J. K.; McLarnan, T. J. J. Solid State Chem. 1984, 53, 382. (d) 
Burden, J. K.; Lee, S. J. Am. Chem. Soc. 1985, 107, 3063. 

(3) Burdett, J. K. Struct. Bonding (Berlin) 1987, 65, 29. 

paring the predictions shown in Figure 1 with the known exper­
imental facts, one finds generally good agreement only for low 
d electron counts. For example, the eH calculation predicts only 
a small energy difference between the two types for a d0 transition 
metal and indeed TiO2 is known in both the rutile and the a-Pb02 

structure types. (ZrO2 and HfO2 have an entirely different co­
ordination around the metal atoms.) Similarly the eH calculations 
are accurate for d1 systems. As Figure 1 shows, the rutile structure 
is preferred and indeed VO2, NbO2, and TaO2 are all found in 
the rutile or the Peierl's distorted rutile structure, 3.4 

It is for the transition-metal dioxides near the half-filled t2g band 
for which the extended Huckel calculations deviate from exper­
imental results. For d2 and d4 transition-metal systems the rutile 
or distorted rutile structures are invariably found, while the 
calculations indicate a-Pb02 is the preferred structure. For d3 

transition-metal systems such as ReO2 the eH method predicts 
that ReO2 should be in the a-Pb02 structure type. The difference 
in energies for the undistorted structures is a hefty 0.4 eV/metal 
atom (see Figure 1). The ReO2 system is therefore expected to 
be found only in the a-Pb02 structure type. In reality ReO2 is 
found in both forms with a-Re02 belonging to the rutile type and 
,3-ReO2 belonging to the a-Pb02 type. We see therefore that the 
energetics for the d3 ReO2 system must be closer to that found 
in the d0 TiO2 system than the eH calculations would have led 
one to believe. 

The source of this deviation is understandable. It is known, 
for example, that the spectra of d2 and d3 transition-metal species 
are dominated by their multiplet structure. This multiplet 
structure is due to electron-electron repulsion, which is ignored 
in the eH method. A second effect is electron localization.5 It 

(4) A discussion of the distorted rutile structure found in transition-metal 
oxides can be found in: Kepert, D. L. The Early Transition Metals; Academic 
Press: New York, 1972; pp 190-193. 
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in: Anderson, P. W. In Magnetism; Rado, G., Suhl, H., Ed.; Academic Press: 
New York, 1963; Vol. 1. Ziman, J. M. Principles of the Theory of Solids; 
Cambridge University Press: Cambridge, 1965; Chapter 5. More recent 
studies include: (b) Said, M.; Maynau, D.; Malrieu, J.-P.; Garcia Bach, M.-A. 
J. Am. Chem. Soc. 1984,106, 571. (c) Said, M.; Maynau, D.; Malrieu, J.-P. 
J. Am. Chem. Soc. 1984, 106, 580. (d) Herrick, D. R. J. Chem. Phys. 1981, 
74, 1239. (e) Alexander, S. A.; Klein, D. J. J. Am. Chem. Soc. 1988, 110, 
3401. (f) Klein, D. J.; Nelin, C; Alexander, S.; Matsen, F. A. J. Chem. Phys. 
1982, 77, 3101. (g) Borden, W. T.; Davidson, E. R. J. Am. Chem. Soc. 1977, 
99, 4587. (h) Ovchinnikov, A. A. Theor. Chim. Acta 1978, 47, 297. (i) Cizek, 
J.; Pauncz, R.; Vrscay, E. R. J. Chem. Phys. 1983, 78, 2468. (j) Bondeson, 
S. R.; Soos, Z. G. J. Chem. Phys. 1979, 71, 3807. (k) Gautier, F. In Mag­
netism of Metals and Alloys; Cyrot, M., Ed.; North-Holland: Amsterdam, 
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Table I. Symbol Key 

2 MORE 
STABLE 

Figure 1. Differences in energy between the rutile structure type, 1, and 
the S-PbO2 type, 2, as a function of the number of d electrons. This curve 
is reproduced with permission of the author: Burdett, J. K. Struct. 
Bonding 1987, 65, 29. Positive values of the plotted curve indicate that 
1 (rutile) is lower in energy while negative values indicate a-Pb02 is more 
stable. The calculations reproduced here were done for a MoO2 stoi-
chiometry. 

is known that the magnetic susceptibility of coupled d3 octahedral 
systems can be quantitatively accounted for with the spin Ham-
iltonian 

H — Z, JkiSk-Si 
k*l 

O) 

where we fix a 3/2 spin particle with corresponding spin operator 
S at each metal position.6 This electron localization is again 
caused by electron-electron repulsion and is again not considered 
in the eH method. We show in this paper that the inclusion of 
these two effects does not alter the correct eH predictions for the 
d1 systems but does alter the prediction for the d3 case. We shall 
see that, for the latter systems, the effect of extreme localization 
is to eliminate all differences between the energies of the rutile 
and a-Pb02 structure types. This corresponds well with the known 
a- and ,3-ReO2 structures and other related structural questions. 

Hubbard Model. Configuration interaction (which is the mixing 
of different Slater determinants to produce a composite ground 
state) is generally introduced as a perturbative correction to a good 
Hartree-Fock or semiempirical calculation.7 Our interest though 
is in studying the effect of electron localization. This requires 
at the outset the inclusion of configuration interaction (CI). That 
this is so may be seen by the following argument: Systems that 
are extremely localized have a fixed number of electrons at each 
atomic site. In order for an electron to migrate from one site to 
another, it must therefore exchange positions with another electron 
(hence, the name of exchange parameter for the / i n eq 1). 
Complete localization therefore implies complete correlated motion 
of the electrons. Correlated electronic motion though is just CI. 

The simplest Hamiltonian, which includes CI, is that of eq 1. 
Our interest though is in correlating this spin Hamiltonian with 
the molecular orbital models, which have been used very effectively 
in solid-state systems. The simplest way of doing so is through 
the Hubbard Hamiltonian8 

H» = Z8k,a
+

kaala + ULa+i+a+
haha,+ (2) 

(see Table I for the symbol key.) The Hubbard Hamiltonian 
considers two separate forces. The first force is the /3 interaction 
of Hiickel theory; the second is the intraatomic electron-electron 
repulsion, U. This Hamiltonian has both the Hiickel and spin 
Hamiltonians as asymptotic cases. It is well suited for systems 
that have localized one electron per atomic orbital. However, we 

(6) See discussion of Cr(III) chains in: Hatfield, W. E.; Estes, W. E.; 
Marsh, W. E.; Pickens, M. W.; ter Haar, L. W.; Weller, R. R. In Extended 
Linear Chain Compounds; Miller, J. S., Ed.; Plenum: New York, 1983; Vol. 
3. 

(7) See discussion in: Szabo, A.; Ostlund, N. S. Modern Quantum 
Chemistry; MacMillan: New York, 1982. 

(8) (a) Hubbard, J. Proc. R. Soc. London 1963, A266, 238; Ibid. 1964, 
A277, 237; Ibid. 1964, A281, 401. (b) Hirsch, J. E. Phys. Ref. 1985, BiI, 
4403. (c) Hirsch, J. E.; Sugar, R. L.; Scalapino, D. J.; Blankenbecker, R. 
Phys. Rev. 1982, B26, 5033. 

a and a* 
kj,k',l' 
« , i » , f 
U, V 

Uh ' " . / 
m, n 

#gH>#HHckel 

#loc (K/J) 
^HdCk=I. * ( < * (K/ J) 

Ittd 

annihilation and creation operators 
atom indices 
2g orbitals 
;g orbitals 
t2g indices 
electron spin indices: up spin is (+), down 

spin is (-) 
generalized Hubbard and Hiickel Hamiltonians 
ocalized limit of HgH as a function of K/J 
ground state of their respective Hamiltonians 
refers to the Slater determinant 

P projection on to localized space, e.g., 
P\tih\ + lfiiil = If1I2I for a system 
comprised of two (t2g) metal atoms 

4>, ^ molecular orbitals, 0O is the lowest energy; 
molecular orbital, ^1 the next to lowest, etc. 

are interested in the d1 and d3 octahedral transition-metal systems 
(d2 systems are numerically somewhat intractractable). For d1 

metals we have localization of one electron per three atomic 
orbitals (i.e., the t2g set). Similarly, for d3 systems we need to 
consider the multiplet structure (as found for example in a 
Tanabe-Sugano diagram9). We therefore must, like many others, 
alter the Hubbard Hamiltonian to suit our particular needs. 

Finally we point out that a major assumption of the Hubbard 
model is that the dominant interatomic interaction is the Hiickel 
# interaction. This interaction produces chemical bonds, and it 
therefore corresponds to antiferromagnetic coupling between 
atoms. Ferromagnetic interactions can be created (in our Hubbard 
type model) but only through the inclusion of intramolecular 
Hund's rule effects (examples of this are found in mixed-valence 
compounds,10 donor-acceptor systems," and the 90° bond angle 
interaction of the Goodenough rules12). Thus, when we apply 
our results to structural questions, we must limit ourselves to those 
systems where the /3 interaction is the dominant interatomic 
pathway. 

(t2g)
3 Generalized Hubbard Model. As we discuss in Appendix 

I, the generalized Hubbard Hamiltonian, which includes intraa­
tomic multiplet effects, is 

#gH - 2Z/3jij'i>a jimafi'm + Y-Hi 

rr 
(3) 

where H/ is defined in Appendix I. The H/ terms replace the 
second term of eq 2 of the ordinary Hubbard model. It is the Ht 

term that contains the transition-metal intraatomic electron-
electron interaction. This Hamiltonian quickly grows to unwieldy 
size. For four (t2g)' atoms it represents a 71280-dimensional 
problem while for four (t2g)3 atoms it corresponds to a 1.3 X 
107-dimensional matrix. We are therefore constrained to con­
sidering its asymptotic limits. As in the ordinary Hubbard model 
there are two asymptotic cases of general interest. In the delo-
calized regime the first term of (3) dominates while the second 
term is merely perturbative. This corresponds to the case where 
standard molecular orbital theory is certainly valid. [In the 
absence of the second term of (3), eq 3 becomes the Hiickel 
Hamiltonian.] In the localized regime, the roles of the two terms 
is reversed. We show in Appendix I that, in the case of (t2g)3 

atoms, eq 3 reduce up to an additive constant to the form of eq 
1. The exchange parameter Jkl is proportional to the average 
interatomic Hiickel fp interaction between the k and / metal sites. 

(9) (a) Sugano, S.; Tanabe, Y.; Kamimura, H. Multiplets of Transition 
Metal Ions in Crystals; Academic: New York, 1970. (b) Griffith, J. S. The 
Theory of Transition Metal Ions; University Press: Cambridge, 1964. 

(10) Munck, E.; Papafthymiou, V.; Surerus, K. K.; Girerd, J. J. Metal 
Cluster in Proteins; Que, L., Jr., Ed.; ACS Symposium Series 372; American 
Chemical Society: Washington, DC; 1988; Chapter 15. 

(11) Miller, J. S.; Epstein, A. J.; Reiff, W. M. Chem. Rev. 1988, 88, 201. 
(12) Goodenough, J. B. Magnetism and the Chemical Bond; Interscience: 

New York, 1963. 
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Table II. Binary and Some Ternary Oxide and Chloride Octahedral 
Chain Structures 

electron 
confign of 

transition metal 

d0 

d1 

d2 

d3 

compsn 

TiO2 

ZrCl4 

HfTiO4 

ZrTiO4 

AlTaO4 

NiNb2O6 

ZnTa2O6 

ZnNb2O6 

VO2 

NbO2 

TaO2 

NbCl4 

TaCl4 

CrO2 

MoO2 

WO2 

MoCl4 

WCl4 

MnO2 

TcO2 

ReO2 

TcCl4 

Cu2Mn3O8 

structure type 

zigzag 
chain (4) 

a-Pb02 

ZrCl4 

a-Pb02 

a-Pb02 

columbite 
tri-a-Pb02 

columbite 

Q-PbO2 

TcCl4 

Cu2Mn3O8 

trans 
chain (5) 

rutile 

rutile 
rutile 

distorted rutile 
distorted rutile 
rutile 
NbCl4 

NbCl4 

rutile 
distorted rutile 
distorted rutile 
NbCl4 

NbCl4 

rutile 
distorted rutile 
distorted rutile 

ref 

13a 
4 
13b 
13b 
13c 
13d 
13e 
13e 

4 
4 
4 
4 
4 

4 
4 
4 
4 
4 

4 
4 
4 
13f 
13g 

This is important, for it may be seen that in the asymptotic limit 
of localized behavior for (t2g)3 atoms all memory is lost of the 
relative spatial orientation of second nearest neighbors. One 
therefore makes the following distinction between the delocalized 
and localized limits. In the delocalized limit one often ignores 
all but first nearest neighbors (as is done in simple Huckel theory). 
Even in the absence of direct interaction between second nearest 
neighbors, the second nearest neighbors can play a strong indirect 
role. Such is the case for the a-Pb02 versus rutile calculations 
shown in Figure 1. In the localized limit on the other hand, in 
the absence of direct second nearest neighbor interactions, the 
localized Hamiltonians for Cn-PbO2 and rutile become completely 
identical. In this localized limit, the infinite chains of edge-sharing 
metal octahedra 4 and 5 are of identical energy. We therefore 
expect that localization removes the energy difference between 
4 and 5 and that hence the (t2g)3 configuration energetically 
resembles the (t2g)° configuration. 

In Table II,13 we contrast the existence of zigzag chains such 
as 4 with trans chains such as 5. We consider systems where the 
metals are in high oxidation states and where the anions are very 
electronegative. It is for these cases that we expect electron 
localization to dominate. It may be seen that, for (t2g)3 systems 
in both the MCl4 and MO2 (M is a transition metal) families, 

(13) (a) Villars, P.; Calvert, L. D. Pearson's Handbook of Crystallo­
graphy Data for Intermetallic Phases; American Society for Metals: Metals 
Park, Ohio, 1985. (b) Roy, R.; Muller, O. 7"Ac Major Ternary Structural 
Families; Springer-Verlag: New York, 1974. (c) Jasper Tonnies, B.; 
Muller-Buschbaum, H. K. Z. Anorg. AlIg. Chem. 1983, 504, 113. (d) 
Wichmann, R.; Muller-Buschbaum, H. K. Z. Anorg. AlIg. Chem. 1983, 503, 
101. (e) Waburg, M.; Muller-Buschbaum, H. K. Z. Anorg. AlIg. Chem. 1984, 
508, 55. (f) Wells, A. F. Structural Inorganic Chemistry, ed.; Clarendon 
Press: Oxford, 1975. (g) Riou, A.; Lecerf, A. Acta Crystallogr. 1977, B33, 
1896. 

there appears to be no preference for either 4 or 5. Finally, in 
the case of the MO2 family, in addition to edge sharing between 
metal octahedra there is also vertex sharing (see 1 and 2). We 
therefore need to verify that it is the interaction of edge-sharing 
metals that predominates. One method of doing so is to study 
the form of the Peierl's distortion. The direction of the Peierl's 
distortion indicates which metal-metal interaction is of the greatest 
importance. As it is found that the Peierl's pairing always occurs 
between edge-sharing metals, we conclude that edge interactions 
dominate (extended Huckel calculations bear this out). We 
therefore may safely apply our comparison of 4 and 5 to the 
question of the relative stability of W-PbO2 versus rutile. 

(t2g)3 Wave Functions. In an earlier paper we pointed out that 
a strong similarity exists between the localized portion of the 
Huckel ground state (/^Hockei) a n d the ground state of the spin 
Hamiltonian for the corresponding system. Our earlier work was 
concerned with spin '/2 systems, and unfortunately our results 
do not carry over to the half filled (t2g)3 case. We illustrate this 
by considering the bimetallic system 6. For the sake of simplicity 

KH 

».-waxK "'-MiXf-" 
8 

we consider the half-filled (eg)
2 configuration in lieu of (t2g)

3. We 
therefore consider the four-electron system where electrons lie in 
the dz2 («) and the d^.^ (v) orbitals, 7 and 8. The (eg)2 

ground-state multiplet is of 3A2 symmetry, and it may therefore 
be treated as a spin 1 particle. The ground state of the generalized 
Hubbard model in the localized limit is a singlet. By symmetry 
is has the form 

*loc = \UlViU2V2\ + IS1CF1M2U2I - 141"11'1"2̂ 2I - 1AlUlVlU2V2] ~ 
Y2WlVlU2V2I - ^ ! " l ^ l ^ l (4) 

The Huckel ground state is of the form 

*Huckel = l<M>l<M>ll 

where 

00 = Vi + V2 

<t>l = «1 + U2 

(5) 

(6) 

(7) 

Therefore when we project ^nockdonto a space where each orbital 
is singly occupied 

^Huckel = P\4>0<l>lM\\ = 
Iu1D1S2JJ2I + IM1U1K2^I - Iu1ViU2V2I - Iu1D1U2JJ2I (8) 

It may be seen that the resemblance between /Meckel a n d Vix 

is slight. 
This result is generally true. Except in the case of spin ' / 2 

particles, the half-filled block localized configuration (i.e., (eg)2 

o r (l2g)3) bears little resemblance to the projection onto localized 
space of 'J'Hockei- Indeed, it is this lack of resemblance that is 
responsible for the lack of correlation between //Huckel a n d //ioc 
predictions for the (t2g)3 configuration of octahedral chains. 

(t2g)' Generalized Hubbard Model. Unlike for the (t2g)3 con­
figuration, when each transition metal has only one t2g electron, 
the generalized Hubbard model (see eq 3) does not become an 
ordinary spin Hamiltonian (see eq 1) in the limit of extreme 
localization. That this is so may be seen by the following argu­
ment. Each (t2g)' metal has a 2T2g multiplet ground state. The 
electron is not forced to be localized on any particular t2g orbital 
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Table III. Comparison of Localized Portion of ^HOCM to *ioc 
(K/J) for 9° 

vvW 
vntt 
VVVi) 
nvnn 
nfjff 
rttt 
nm 
ntfV 
vM 
if)f 
•jfft 
uttu 
f^f 
fulf 
f»tof 
friflf 
tah 
frjff 

m ffff 
ff™ 
ff9u 
ffff 
ffff 

^ H l C k . ! * 

0.000 
0.000 
0.000 
0.000 
1.000 

-1.000 
1.000 
1.000 
0.000 

-1.000 
-1.000 

0.000 
1.000 
1.000 

-1.000 
0.000 
0.000 

-1.000 
0.000 
0.000 
1.000 

-1.000 
0.000 
0.000 

*!<* (K/J = C 

0.000 
0.000 
0.000 
0.000 
0.932 

-0.932 
0.933 
1.000 
0.000 

-0.933 
-1.000 

0.000 
0.871 
0.933 

-0.871 
0.000 
0.000 

-0.933 
0.000 
0.000 
0.932 

-0.932 
0.000 
0.000 

"We report the values of the various ground 
and Sj = 0. » 
cThe first row 

foi^f*!. 
1.0. 

Table IV. 

etc. 

We present the ground states 

•0) *„ 

states at 
n column 

is the coefficient of the \v\V2V3V*\< the 

(AT/7 = 0.1) 

0.022 
-0.001 

0.019 
-0.041 

0.538 
-0.537 
0.973 
1.000 

-0.196 
-0.777 
-0.802 
-0.198 

0.912 
0.973 

-0.720 
-0.192 
-0.196 
-0.777 
-0.001 

0.018 
0.538 

-0.537 
0.031 

-0.049 

Sw/S.\ = 0.7 
vector form. 
second row 

rfWe have fixed the value of the largest coefficient to 

Overlap between Different Ground States 

systei 

9 
11 

Tl 

<^,H«cl«ll*l« 
K/J = 0.0 

0.980 
0.970 

(K/J)) 

K/J = 

0.67: 
0.75' 

0.1 

but rather may lie in any linear combination of the three t2g 

orbitals. Therefore, no simple spin '/2 s P ' n Hamiltonian of the 
type given in eq (1) can generate the correct number of wave 
functions for the couplings of the 2T2g-2T2g interatomic interac­
tions. This is important. As the (t2g)' localized limit is not of 
the form of eq 1, energetic differences due to bond angle effects 
may well be retained. Such is indeed the case. In the localized 
limit there are two important parameters (see Appendix I) that 
govern electron-electron interactions. The first is the J coulombic 
interaction, which corresponds to the cost in energy of bringing 
two electrons onto one atom. It replaces the U parameter of 
ordinary Hubbard theory. Thus states that have an unequal 
number of electrons on each metal lie higher in energy than those 
with a uniform distribution of electrons. As we are interested in 
the limit of extreme localization, we need to consider only the 
lowest lying of these excited states. In the lowest lying excited 
states there is a single metal that has a (t2g)2 configuration and 
another metal that has a (t2g)° configuration, and all other metals 
have a (t^)1 configuration. The second important parameter is 
the exchange integral, A", which controls the splitting between the 
various (t2g)2 multiplets. In the limit of extreme localization, it 
is the ratio of these two parameters that is important.14 As K 
is an exchange integral and / is a coulomb integral, it is to be 
expected that K/J will be relatively small. Calculations of K/J 
for Sc1, Ti", V1V, CrIV, and Mnv result in K/J values that range 
from 0.037 to 0.041.15 We therefore in this article consider K/J 
values ranging from 0.0 to 0.1. 

(14) In second-order perturbation theory the energy denominator is the 
difference in energy between the ground and excited states. For the case 
considered here it can be expressed as J(I + mK/J) where m is an integer. 
The J term defines the energy scale leaving K/J as the only parameter. 

(15) (a) Watson, R. E. Technical Report No. 12 from Solid State and 
Molecular Theory Group MIT, Cambridge, Massachusetts, 1959. (b) 
Watson, R. E. Dissertation Thesis, MIT, 1959. 

Table V. Ratio of d Block Stabilization Energies for 9, 11, and 12° 

E(U) I E(9) 
£(12)/£(9) 

^HOckel 

0.91 
0.82 

K/J = 0.0 

0.89 
0.86 

•#loc 

K/J = 0.1 

0.90 
0.88 

" We have set the t2g Hiickel coulombic value to zero. Thus the en­
ergies reported are the ratio of the total d block stabilization energy 
caused by t2g—t2g interaction. 

Some insight into the (t2g)' localized limit can be found in 
considering the model system 9, which is a cluster of four trans 
edge-sharing octahedra. The 12 t2g orbitals of 9 are shown and 
named in 10. For this model system we contrast in Table III 

I I 

10 a 

10 b 

10 c 

the localized portion of the Hiickel ground state (.P^Hackei) w ' t n 

the ground state in the limit of localization for the generalized 
Hubbard model (^\x) • In this preliminary calculation we have 
eliminated all 8 interaction and set {m\Vj) = 0.933 (f,|f,> where 
i and j are on neighboring metal atoms. This corresponds to setting 
15,/S17I = 0.7. (We discuss and vary these values in latter sections.) 
As Table III shows, the /^Hocirei provides an excellent estimate 
for W1x when KjJ = 0.0 and a reasonable estimate for ^[x when 
K/J = 0 . 1 . We may in the same way consider the four transi­
tion-metal cluster 11. The V1x and î Hdckei are too complicated 
to present full here (the S2 = 0 manifold is a 486-dimensional 
space!). An excellent measure though is the dot product 

X= (^Huokell*loc(^//)> (9) 

where /N^Hackd a n ( i ^ioc (K/J) are both normalized. We show 
these results in Table IV. Recalling that these vectors span a 
486-dimensional space, the overlap is really quite large. 

1 1 

12 

We may in the same manner compare the energetic predictions 
of Hix and Hymokd. For good measure we also consider the 
cluster 12. We show our results in Table V. It may be seen that 
#H0ckei. #ioc (K/J = 0), and H1x (K/J =0.1) all rank the three 
systems in the same order. The inclusion of electron localization 
does not alter the energetic predictions. It will be recalled that 
extended Hiickel calculations comparing rutile (1) and a-Pb02 

(2) suggested that for d1 configurations the trans arrangement 
of rutile is lower in energy. To the extent that our four metal 
clusters form a good estimate of the energetic behavior of the 
chains 4 and 5, we conclude that the extended Hiickel calculation 
will correctly predict the (t2g)' structural preferences. As we 
discussed earlier (see Table II) the Hiickel results do correlate 
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Table VI. 

atom 

V 
Nb 
Ta 

Sx/S, for Various Metal Atoms 

orbital" 

3d 
4d 
5d 

fi 
4.75 
4.08 
4.76 

C, 

0.4558 
0.6401 
0.6103 

tl 
1.59 
1.64 
1.94 

C2 

0.7516 
0.5516 
0.6108 

metal-metal6 

distance, A 

2.90 
3.00 
3.07 

direct 

-0.969 
-0.986 
-0.896 

SJS/ 
effective for 9 

-0.431 
-0.432 
-0.458 

effective for 11 

-0.432 
-0.435 
-0.452 

° Double-f STO used. b Metal distances are average metal-metal distances in MO2 (M 
10) are given here. 

V, Nb, Ta). CSX/S„ between atom 1 and atom 2 (see 

0.6-

0.3-

0 

-o.a 

-0.& 

d0 

9 MORE STABLE A 

A J* d3 <W d5 d* 

11 MORE STABLE 

Figure 2. Difference in energy between the trans chain of edge-showing 
octahedra, 9, and the cis chain, 11, as a function of the number of d 
electrons. Positive values of the curve indicate 9 is more stable, and 
negative values, that 11 is more stable. Compare with Figure 1. 

.85 
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.95] 
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\ 
04 0.6 0.8 1X) 

Figure 3. Ratio of stabilization energy of 9 and 11 as a function of 
15,/5,I. The >>-axis plots the t2g block energy of the ground state of 11 
divided by that of 9. We have set the Huckel coulombic a value equal 
to zero for the t2g block; thus, energies plotted are ratios of stabilization 
energies. The dashed line is for i/Hockei. ar>d the dotted line, for H1x (K/J 
= 0.1). Calculations were carried out only at the indicated points. 

well with the experimental facts. Are the clusters 9 and 11 though 
sufficient models for 1 and 2? One good test is to compare the 
extended Huckel calculation for these two clusters and compare 
them with the full band calculation reported by Burdett.3 We 
show the relative energies of 9 and 11 in Figure 2. It agrees well 
with the results shown in Figure 1. We therefore conclude that 
our calculations are pertinent, as long as the correlated motion 
of electrons more than four unit cells apart do not give rise to 
important energetic effects. Finally, we show in Figure 3 that 
the relative preference of 9 vs 11 is reasonably independent of the 
value of \SJS,\. 

S c and Sx. In the previous section we considered a fixed ratio 
between the a overlap S„ and the ir overlap Sx. In Table VI we 
show the actual value for Sr/S„ for various transition metals. Two 
different Sx/Sc values are given. The direct Sx/Sc values cor­
respond to the through-space overlap of the transition-metal d 
orbitals. The effective Sx/S„ values correspond to a mixture of 
the through-space and through-bond couplings. We discuss the 
provenance of these effective Sx/S„ values in the next section. In 
this section we discuss the consequences of the various Sx/Sa 

numerical values. We consider first 9. In 9, the t2g orbitals 
decompose into a set, which interact principally through a bonds, 
purely through h bonds, and purely through 7r bonds. We showed 
these sets in 10. The Huckel molecular orbital diagram for the 
composite sets is given in Figure 4. It may be seen that, for a 
critical value of Sx/S„, ^Huckei transforms from a state where all 
four (I28)1 electrons lie in the a set, 10a, to a state where two 

- 3 . O p 

•1 .0P 

1.0 p 

L „ x " 3.0P 
c Ti o 

Figure 4. Huckel energy diagram of t2g orbitals of 9 at 15,/5,I = 0.38. 
At this critical value, according to Hund's rule a triplet (shown in the 
figure) would be lower in energy. For \SX/Sa\ values either significantly 
greater or less than this value, the ground state is a singlet. 

Figure 5. Number of electrons in the lowest lying singlet state as a 
function of |S,/S„|. H1x (K/J = 0) and solid line for H]x (K/J = 0.1). 
For this latter curve calculations at four 15,/S,! ratios were carried out. 
These are indicated by the points. The solid line is only an aid to the 
viewer. Furthermore, in the region of transition the Vf1x (K/J = 0.1) is 
a triplet where n„ = 3. See Figure 4. 

electrons lie in the a set and two in the -w set, 10b. The same 
transition is found to occur when the generalized Hubbard model 
is used. Indeed when K/J is set equal to zero, it is impossible 
in the generalized Hubbard model for electrons to leave a a orbital 
for a IT orbital, and vis-a-versa. Only in the case of a nonzero 
KjJ parameter is such a transition possible. This is so as (t2g)2 

multiplet configurations contain mixtures of a and ir electrons. 
In Figure 5 we contrast the change in the number of a electrons 
as a function of the ST/S„ ratio. We show here the sudden 
transition that occurs for the Huckel Hamiltonian and for the 
localized generalized Hubbard model when KjJ - 0.0. By 
contrast the transition is not a step function for K/J = 0.1. It 
may be seen that while the transition for the Huckel Hamiltonian 
occurs at a much lower value, the qualitative shape of the function 
is independent of the asymptotic limit under consideration. 

Through-Bond vs Through-Space Interactions. Up to this point 
we have considered only the direct a and ir transition-metal in­
teractions on neighboring metals. We have therefore neglected 
the 8 bonds and the next nearest neighbor interactions. More 
importantly we have ignored all through-bond couplings. As the 
primary interaction is that between the transition metals and its 
neighboring oxygen anions, in an accurate account of the met­
al-metal interaction such through-bond coupling must be included. 
Indeed, much of our understanding of transition-metal interactions 
in oxides is based on such ideas of superexchange.53,12 

Fortunately, it is not difficult to include all these different effects 
on an equal foooting. We do so in the following manner. In Figure 
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Table VII. 

<M«|fi> 
(M^If3) 

(vmvi) 
W I i 3 ) 

<fll#l*J> 

Effective 

effective, 
eV 

-0.681 
-0.684 

0.410 
0.415 

0.119 
0.119 

vs Direct Interactions" 

direct," 
eV 

"a" Block 
-0.596 (MWIf3) 
-0.577 <f,|i¥|f4> 

TT Block 
0.758 ivAmm) 
0.765 (vAH\Vt) 

5 Block 
-0.173 <{,|fl|&> 

0.173 (J1IiVIf4) 

effective, 
eV 

0.054 
-0.044 

0.041 
0.003 

-0.003 
0.000 

direct," 
eV 

-0.013 
0.033 

0.074 
0.007 

0.003 
0.000 

Figure 6. Molecular orbitals (MO's) for the t2g set of 9 in the presence and absence of ligand orbitals. In A we show the MO diagram in the absence 
of ligand-metal orbital interactions for the purely t2g orbitals. IT MO's form both the most bonding and antibonding combination. In B oxygen atoms 
are also included in the calculation. The size of the oxygen contribution has been enlarged so as to render their phases more clear. Note that the a 
MO's now have the strongest interaction. Furthermore, the order of the <5 MO's has reversed. In both A and B, calculations were carried out on the 
geometry described in Table VII. 

the TT orbitals span the widest range of energies in Figure 6A while 
the or orbitals have the widest span in Figure 6B. The interchange 
of the 6 orbital signs may be seen by the reversal of the order of 
the S molecular orbitals in going from Figure 6A to Figure 6B. 

The cause for these differences may be deduced from Figure 
6. The 5 interaction reverses sign as it is through-bond (metal-
oxygen) coupling, which is of the greatest importance for these 
molecular orbitals. The oxygen-metal metal interaction though 
is antibonding rather than bonding, thus leading to a sign reversal 
in the 5 interaction. Similarly, the change in the ir and a band-
widths results from the form of their respective molecular orbitals 
given in Figure 6B. Whenever the -K metal orbitals are antibonding 
to one another, they are of incorrect symmetry to interact with 
any oxygen atomic orbitals. This is not the case for ir metal-metal 
bonding orbitals. Recalling that the oxygen-metal interaction 
is of antibonding character in the t2g block, there is therefore a 
smaller upward shift for TT metal orbitals of metal-metal anti-
bonding character. By contrast for the a orbitals, the ability of 
the oxygen orbitals to interact with the transition-metal t2g orbital 
is independent of whether the transition metals are bonding or 
antibonding to one another. Hence overall there is a constant shift 
for all the a molecular orbitals. 

The net result is that, for the effective Hamiltonian interactions, 
the appropriate ST/SC ratio is much smaller than might have been 
anticipated. As we have shown in Figure 3, the relative energies 
of 9 and 11 are reasonably invariant to S^/Sc changes (i.e., for 
ST/S„ ranging from 0.4 to 0.9). Indeed when we calculate the 
energies of the two systems 9 and 11 using the full effective 
Hamiltonian (which includes second nearest neighbor, 5 bonds, 
and through-bond coupling) our overall answer is not changed 
by very much. For the vanadium system £(11)/.E(9) = 0.874 
in reasonable agreement with the results of Figure 3. 

Finally we mention two further features of the effective Ham­
iltonian. It is no longer required that the t2g orbitals on the same 
atom are orthogonal. Such effects however are slight. Even at 
their largest they are at least 2 orders of magnitude smaller than 
the largest overlaps. More significantly, the t2g orbitals no longer 
have the same a (coulomb) values. For example in 9 the a values 
of the cr, ir, and 5 orbitals become, respectively, -9.69,-9.75, and 
-9.81 eV. This is so as, in the extended Hiickel method, atomic 
orbitals, which strongly interact, give rise to antibonding molecular 
orbitals, which are more antibonding than the bonding molecular 
orbitals are bonding. Hence the mean is shifted upward. However, 
as we are not sure of the validity of this effect, we have censored 
it from our calculation. 

Conclusion 
We have shown in this paper that, for certain electron counts 

(i.e., (t2g)3), the energetic predictions of the Hiickel model can 

"Perfect octahedra were used in this calculation. Vanadium atoms 
2.9 A apart were chosen. The vanadium parameters were a(4s) = 
-8.81 eV, a(4p) = -5.52 eV, a(3d) = -11.0 eV. f(4s) = f(4p) = 1.3. 
For V(3d) a double-f expansion was used fj = 4.75, C1 = 0.4558, f2 = 
1.5, C2 = 0.7516. For O, a(2s) = -32.3 eV, a(2p) = -14.8, f(2s) = 
f(2p) = 2.28. 4We report here the simple Hiickel matrix, which will 
reproduce the extended Hiickel diagram shown in Figure 6A. cThe a 
block contains also a small h contribution as (Mf2) = 3 / A + ' / A 

6 we show the extended Hiickel t2g molecular orbital energy 
diagram for the cluster 9 in both the presence and absence of the 
surrounding anions. We also include in the former case the 
transition-metal s and p orbitals. The latter case (i.e., without 
anions present) shown in Figure 6A corresponds to an ordinary 
12-dimensional matrix prroblem. Each of the 12 orbitals are 
purely t2g in character. By contrast in Figure 6B, where anions 
have been included, these 12 molecule orbitals, while mainly of 
t2g character, contain oxygen s and p and to a lesser extent 
transition metal eg, s and p character as well. We now introduce 
an effective Hamiltonian, which has 12 metal t2g orbitals whose 
interaction exactly reproduces the molecular orbital diagram 
energies of Figure 6B (see Appendix II for details). In this 
effective Hamiltonian method we have included implicitly all the 
through-bond and through-space effects present in the full-valence 
space extended Hiickel calculation. In Table VII we contrast the 
interactions between these effective orbitals and the more ordinary 
pure t2g orbitals. In this table we have labeled the 12 orbitals J1 

through f4 as shown in 10. It may be seen that the orbitals 
conveniently divide into 5,7r, and primarily <r blocks. Furthermore, 
as Table VII shows, there are substantial differences between the 
direct and the effective interactions. One principle difference is 
that, in the direct Hamiltonian, -K interactions dominate while in 
the effective approach, a interactions do so. A second difference 
is that while for the direct Hamiltonian the S interaction is positive, 
for the effective Hamiltonian, it is negative. Both these trends 
may be seen in Figure 6. The former effect reveals itself in that 
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J-3K 

s-m K icg-N 

J - 2 K Q | ^ I |TlI|^)j-2K 

J-2KQ|«I —*— lcO J"2 K 

J.2KQ|Tl5 — l # 0 J-2K 

Figure 7. Coulomb and exchange interactions for the (t2g)2 configuration. 
Straight lines represent off-diagonal matrix elements equal to K. Diag­
onal matrix elements are shown adjacent to the 3/4 circles. Only S1 S 
0 states are shown in this figure. 

be completely overturned by the inclusion of the correlated motion 
of the electrons while for other electron counts (i.e., ( t 2 g ) ' ) the 
Hiickel prediction remains consistently valid. Thus is the case 
of transition-metal systems some care must be taken in applying 
the extended Hiickel results. In the case of (t2g)3 systems in which 
the metals have high formal oxidation states and where the 
counterion to the metal is highly electronegative, we may anticipate 
that electron localization is important , and hence the extended 
Hiickel prediction is modified. W e have seen that the structural 
evidence indicates that such is the case for group VIIB oxides and 
chlorides where the metal is the IV oxidation state. Nevertheless, 
it should be noted that even for metal ions such as these, there 
are certain s tructural questions, such as the question of site 
preference for which the Hiickel answer is still valid.16 By 
contrast, much less care needs to be taken for ( t 2 g) ' systems. The 
energetic prediction of the extended Hiickel calculation has been 
shown to be unchanged by electron localization. For this reason 
the extended Hiickel calculation provides an accurate account of 
the ( t 2 g ) ' oxide and chloride systems. 

Appendix I 
Single (t2g)" Configuration. Ignoring both spin-orbit coupling 

and the effect of any eg or metal s and p orbital CI , the Tan-
abe -Sugano term energies9 and wave functions of both the ( t 2 g ) 2 

and ( t 2 g ) 3 configurations correspond to the Hamil tonian shown 
diagrammatical ly in Figure 7. W e follow in this figure and 
throughout this paper the Tanage -Sugano nomenclature9 where 
I, Tj, and f stand for, respectively, the yz, xz, and xy t2g orbitals. 
The J and K of Figure 7 are the standard two electron integrals: 

j = Jd?, d?2 rwrvdp—f-wMh 

K = Jdr, d?2 www-y^mm 

(10) 

(H) 

It may be seen, from Figure 7, that the illustrated Hamil tonian 
is the same as that discussed by Tanabe, Sugano, and Kamimura.9 

It corresponds to the Hamil tonian 

H1 = Ef I^ 
IJ 

m,n 

ifi*jmfllmfllnl + a+JnI^'imfijmfitJ + 

J-IK1 

Multi-(t2g)" Configurations. Our interest is in exploring the 
effect of meta l -meta l interactions. W e assume that the Hiickel 
fi interactions are the predominant interaction of this type. W e 
therefore choose for our generalized H u b b a r d Hamil tonian 

Hgli = ZH1 + E /Wa+) l najrm (13) gH - 1-.H1 + Y-fijIJl'd JlnOj'I'm 
1 JJJ' 

Um 

Our primary interest in HiH is in contrasting localized to de-
localized electronic behavior. Delocalized motion, which corre­
sponds to molecular orbital theory is to be found when J and K 
are small in comparison to the principal /3 interactions. Localized 
motion corresponds to the limit where J and K are large compared 
to all /3 interactions. Fur thermore , as we are not at present 
interested in studying mixed-valence species, we assume J » K 
» \f$jijr\. As J is the dominant term, we therefore find that the 
last term in eq 12 dominates. As J is always positive it may be 
seen that the lowest energy configurations have (to the extent it 
is possible) a uniform number of electrons on each metal site. 

(t2 g)3 Configuration. In the case where every metal a tom is 
of the ( t2 g)3 type, eq 13 can be simplified. W e consider here the 
regime where J » K » |/3;/y;/|. T h e ground state of /Z1 under 
these conditions is just the quadruplet 4 A l g . In the 4 A l g multiplet 
the £, 77, and f t2g orbitals a re each singly occupied. As the K 
interaction has been assumed large compared to the 0 interactions, 
we need therefore consider as our low-lying states only those states 
that have each t2g orbital singly occupied. The first te rm of eq 
12 (out of the three terms) applies only to doubly occupied t2g 

orbitals and may therefore be ignored (for lowest order per tur­
bation correction). The last term is merely an additive constant 
dependent on the number of t2g electrons. H1 therefore reduces 
to 

IS 

H1 = E-a+
J n;a + ' 'm^«'a""' + C W ) (14) 

m,n 

J-2K 
3(7 - 2/0 
6(J - 2K) 

N1 = 3 
N1 = 4 

(15) 

and TV, is the number of t2g electrons on the /th site. This may 
be written in a spin operator form 

H1 = E ^ ( I - 4§,rSj,) + C(TV1) (16) 

where 5W is a spin ' /2 operator of the (th t2g orbital of the /th atom 
[e.g., 5| ,_ operator is the lowering that converts £, into £/]. 
Therefore, we find: 

Hgii = L ^ ( I - 4S1J-Sj1) + C(N1) + L fora+jMtifrm (17) 
IJ ^ JlJT 
I m 

Treat ing the interatomic interactions as a perturbat ion, we find 
tha t the second-order per turbed form of Hgii is: 

tfgH = E f ( I - tSu-Sji) - -y-^ZWjwni - 4§jrs,r) (18) 

W e therefore have, as might be expected, a strong in t raa tomic 
ferromagnetic interaction and a weaker ant iferromagnetic in­
teratomic interaction. As we have assumed a (t2 g)3 configuration 
at each atom, we can express the above in terms of 3/2 spin 
operators Si 

(19) 

a jnia imiaimiajni] (12) where 

(16) Lee, S. J. Am. Chem. Soc. 1988, 110, 8000. 

HgH = Y,LnSrSi> + constant 

4 1 
L"' = 7^2K^m)29 

(20) 
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This is the result used in the text. 

Appendix II 
Our effective Hamiltonian is made by the following recipe. We 

project the 12 t2g molecular orbitals onto the pure t2g atomic orbital 
space. Let us call these projected orbitals Q^„ where n ranges 
from 1 to 12 and where 

H^n = A„*„ (21) 

Prior to 1981 it was generally agreed, following pioneering work 
by Parmenter,1 that the photodissociation of glyoxal2 to give 
molecular hydrogen proceeded via the two-step mechanism 

OO O 
Il Il Il 
C-C - C + CO (1a) 

H ' \ H '
 SH 

O 
I l 
C H2 + CO (1b) 

H H 
However, in 1981 Osamura and one of us (OS)3 pointed out that 
the large barrier height for formaldehyde dissociation (eq lb) 
precludes this two-step mechanism under typical conditions for 
glyoxal dissociation. Based on qualitative molecular orbital theory 
(Woodward-Hoffmann-like orbital correlation diagrams), OS 
suggested in place of (1) the unimolecular triple dissociation 
mechanism 

O O 

C-C H2 + CO + CO (2) 

The unconventional "triple whammy" proposal of OS3 was 
subjected to quantitative theoretical examination later the same 
year by Osamura, one of us, Dupuis, and Lester (OSDL).4 OSDL 
optimized the glyoxal stationary point structures at the self-
consistent-field (SCF) level of theory, using basis sets as large 
as double zeta plus polarization (DZ+P). However, correlation 
effects were considered only at assumed geometries with the much 

f Present address: Department of Chemistry, Rice University, P.O. Box 
1892, Houston, TX 77251. 
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We require 

# Wfi*,, = KQ*n (22) 

H'tf{ is not a hermetian operator. Therefore we define 

H* = Y2(H'«! + H'^) (23) 

It should be noted that the deviation of H'efr from hermeticity has 
been found to be very slight. 

smaller 3-2IG basis set.5 The Davidson-corrected6 CISD (con­
figuration interaction including all single and double excitations) 
barrier height for (2) is predicted to be 66 kcal/mol with the 3-2IG 
basis set. OSDL4 argued in addition that the effects of zero-point 
vibrational energy (ZPVE) would place the triple whammy ac­
tivation energy below the experimental upper bound of 62.9 kcal. 
Thus the hypothesized3 unimolecular triple dissociation gained 
substantial theoretical support. 

The experimental upper bound to the activation energy requires 
a brief explanation. The glyoxal photodissociation experiments 
typically begin with the laser-excitation of ground-state-f/wts-
glyoxal, S0, to the zero-point vibrational level of the first excited 
singlet state, S1. This zero-point level of S1 is known to lie 62.9 
kcal above the vibrational ground state of S0 trans-g\yoxa\. 
Thereafter, there occurs a radiationless transition 

S1 —• S0 

to the upper vibrational manifold of the ground-state S0 potential 
energy surface. The Hepburn experiments7 show that dissociation 

(1) Parmenter, C. S. J. Chem. Phys. 1964, 41, 658. 
(2) For early work on the photochemistry of glyoxal, see: Norrish, R. G. 
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939. 
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Pullman, B., D. Reidel: Dordrecht, Holland, 1974. 
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Abstract: Several high-level ab initio theoretical methods have been used to investigate the proposed (1980) "triple whammy" 
mechanism for the unimolecular dissociation of glyoxal. Basis sets of double zeta plus polarization (DZ+P) and triple zeta 
plus double polarization (TZ+2P) quality have been used in connection with CISD, CCSD, and CCSDT-I theoretical methods. 
The theoretical studies show unambiguously that the triple dissociation mechanism is operative under conditions used in the 
laboratory to investigate glyoxal photochemistry. Also confirmed, contrary to existing experiments, is the early (1975) theoretical 
prediction of Dykstra that the C-C single bond distance of cAy-glyoxal is longer than for //•art.r-glyoxal. Vibrational frequencies 
for both cis- and trans-g\yoxa.\ are predicted and show good qualitative agreement with existing experimental data. The ordering 
(theory and experiment) of cis and trans C-C stretching frequencies is consistent with the theoretical structural predictions. 
The predicted energy difference between the cis and trans isomers of glyoxal falls within the error bars of the recent experiments 
by Parmenter's group. 


